Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
11
pubmed:dateCreated
2008-11-7
pubmed:abstractText
Hidden Markov models (HMMs) have been successfully applied to the tasks of transmembrane protein topology prediction and signal peptide prediction. In this paper we expand upon this work by making use of the more powerful class of dynamic Bayesian networks (DBNs). Our model, Philius, is inspired by a previously published HMM, Phobius, and combines a signal peptide submodel with a transmembrane submodel. We introduce a two-stage DBN decoder that combines the power of posterior decoding with the grammar constraints of Viterbi-style decoding. Philius also provides protein type, segment, and topology confidence metrics to aid in the interpretation of the predictions. We report a relative improvement of 13% over Phobius in full-topology prediction accuracy on transmembrane proteins, and a sensitivity and specificity of 0.96 in detecting signal peptides. We also show that our confidence metrics correlate well with the observed precision. In addition, we have made predictions on all 6.3 million proteins in the Yeast Resource Center (YRC) database. This large-scale study provides an overall picture of the relative numbers of proteins that include a signal-peptide and/or one or more transmembrane segments as well as a valuable resource for the scientific community. All DBNs are implemented using the Graphical Models Toolkit. Source code for the models described here is available at http://noble.gs.washington.edu/proj/philius. A Philius Web server is available at http://www.yeastrc.org/philius, and the predictions on the YRC database are available at http://www.yeastrc.org/pdr.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/18989393-11152613, http://linkedlifedata.com/resource/pubmed/commentcorrection/18989393-11473007, http://linkedlifedata.com/resource/pubmed/commentcorrection/18989393-11590105, http://linkedlifedata.com/resource/pubmed/commentcorrection/18989393-12016059, http://linkedlifedata.com/resource/pubmed/commentcorrection/18989393-12634065, http://linkedlifedata.com/resource/pubmed/commentcorrection/18989393-15111065, http://linkedlifedata.com/resource/pubmed/commentcorrection/18989393-15215532, http://linkedlifedata.com/resource/pubmed/commentcorrection/18989393-15223320, http://linkedlifedata.com/resource/pubmed/commentcorrection/18989393-15608220, http://linkedlifedata.com/resource/pubmed/commentcorrection/18989393-15674282, http://linkedlifedata.com/resource/pubmed/commentcorrection/18989393-15919996, http://linkedlifedata.com/resource/pubmed/commentcorrection/18989393-15943807, http://linkedlifedata.com/resource/pubmed/commentcorrection/18989393-16351738, http://linkedlifedata.com/resource/pubmed/commentcorrection/18989393-16846981, http://linkedlifedata.com/resource/pubmed/commentcorrection/18989393-16847258, http://linkedlifedata.com/resource/pubmed/commentcorrection/18989393-17483518, http://linkedlifedata.com/resource/pubmed/commentcorrection/18989393-17579561, http://linkedlifedata.com/resource/pubmed/commentcorrection/18989393-17784779, http://linkedlifedata.com/resource/pubmed/commentcorrection/18989393-18075582, http://linkedlifedata.com/resource/pubmed/commentcorrection/18989393-18218144, http://linkedlifedata.com/resource/pubmed/commentcorrection/18989393-18477697, http://linkedlifedata.com/resource/pubmed/commentcorrection/18989393-18545655, http://linkedlifedata.com/resource/pubmed/commentcorrection/18989393-2706403, http://linkedlifedata.com/resource/pubmed/commentcorrection/18989393-6582470, http://linkedlifedata.com/resource/pubmed/commentcorrection/18989393-9051728, http://linkedlifedata.com/resource/pubmed/commentcorrection/18989393-9149143, http://linkedlifedata.com/resource/pubmed/commentcorrection/18989393-9769220
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Nov
pubmed:issn
1553-7358
pubmed:author
pubmed:issnType
Electronic
pubmed:volume
4
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
e1000213
pubmed:dateRevised
2009-11-18
pubmed:meshHeading
pubmed:year
2008
pubmed:articleTitle
Transmembrane topology and signal peptide prediction using dynamic bayesian networks.
pubmed:affiliation
Department of Electrical Engineering, University of Washington, Seattle, Washington, United States of America.
pubmed:publicationType
Journal Article, Research Support, N.I.H., Extramural