Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:18542208rdf:typepubmed:Citationlld:pubmed
pubmed-article:18542208lifeskim:mentionsumls-concept:C0444626lld:lifeskim
pubmed-article:18542208lifeskim:mentionsumls-concept:C1328817lld:lifeskim
pubmed-article:18542208lifeskim:mentionsumls-concept:C0023089lld:lifeskim
pubmed-article:18542208lifeskim:mentionsumls-concept:C0181868lld:lifeskim
pubmed-article:18542208lifeskim:mentionsumls-concept:C1513371lld:lifeskim
pubmed-article:18542208pubmed:issue2lld:pubmed
pubmed-article:18542208pubmed:dateCreated2008-6-10lld:pubmed
pubmed-article:18542208pubmed:abstractTextThe mini-stopband (MSB) of a W3 line-defect photonic crystal waveguide is used as a mirror for a GaAs based quantum-dot laser. Single mode, continuous-wave lasing is demonstrated for broad area lasers up to a current of 125 mA (2.7 x laser threshold), which demonstrates the high degree of mode selectivity of the MSB mirror. FDTD calculations indicate that optimisation of the mirror interface could lead to a further fourfold increase in reflectivity resulting in significantly reduced thresholds.lld:pubmed
pubmed-article:18542208pubmed:languageenglld:pubmed
pubmed-article:18542208pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:18542208pubmed:citationSubsetIMlld:pubmed
pubmed-article:18542208pubmed:statusMEDLINElld:pubmed
pubmed-article:18542208pubmed:monthJanlld:pubmed
pubmed-article:18542208pubmed:issn1094-4087lld:pubmed
pubmed-article:18542208pubmed:authorpubmed-author:MooreS ASAlld:pubmed
pubmed-article:18542208pubmed:authorpubmed-author:WhiteT PTPlld:pubmed
pubmed-article:18542208pubmed:authorpubmed-author:KraussT FTFlld:pubmed
pubmed-article:18542208pubmed:authorpubmed-author:O'FaolainLLlld:pubmed
pubmed-article:18542208pubmed:issnTypeElectroniclld:pubmed
pubmed-article:18542208pubmed:day21lld:pubmed
pubmed-article:18542208pubmed:volume16lld:pubmed
pubmed-article:18542208pubmed:ownerNLMlld:pubmed
pubmed-article:18542208pubmed:authorsCompleteYlld:pubmed
pubmed-article:18542208pubmed:pagination1365-70lld:pubmed
pubmed-article:18542208pubmed:meshHeadingpubmed-meshheading:18542208...lld:pubmed
pubmed-article:18542208pubmed:meshHeadingpubmed-meshheading:18542208...lld:pubmed
pubmed-article:18542208pubmed:meshHeadingpubmed-meshheading:18542208...lld:pubmed
pubmed-article:18542208pubmed:meshHeadingpubmed-meshheading:18542208...lld:pubmed
pubmed-article:18542208pubmed:meshHeadingpubmed-meshheading:18542208...lld:pubmed
pubmed-article:18542208pubmed:meshHeadingpubmed-meshheading:18542208...lld:pubmed
pubmed-article:18542208pubmed:meshHeadingpubmed-meshheading:18542208...lld:pubmed
pubmed-article:18542208pubmed:meshHeadingpubmed-meshheading:18542208...lld:pubmed
pubmed-article:18542208pubmed:meshHeadingpubmed-meshheading:18542208...lld:pubmed
pubmed-article:18542208pubmed:meshHeadingpubmed-meshheading:18542208...lld:pubmed
pubmed-article:18542208pubmed:year2008lld:pubmed
pubmed-article:18542208pubmed:articleTitlePhotonic crystal laser with mode selective mirrors.lld:pubmed
pubmed-article:18542208pubmed:affiliationDepartment of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK. sam15@st-andrews.ac.uklld:pubmed
pubmed-article:18542208pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:18542208pubmed:publicationTypeEvaluation Studieslld:pubmed