Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:15926850rdf:typepubmed:Citationlld:pubmed
pubmed-article:15926850lifeskim:mentionsumls-concept:C0026336lld:lifeskim
pubmed-article:15926850lifeskim:mentionsumls-concept:C0018969lld:lifeskim
pubmed-article:15926850lifeskim:mentionsumls-concept:C0020281lld:lifeskim
pubmed-article:15926850lifeskim:mentionsumls-concept:C0205177lld:lifeskim
pubmed-article:15926850lifeskim:mentionsumls-concept:C1705920lld:lifeskim
pubmed-article:15926850lifeskim:mentionsumls-concept:C1157872lld:lifeskim
pubmed-article:15926850lifeskim:mentionsumls-concept:C0441712lld:lifeskim
pubmed-article:15926850lifeskim:mentionsumls-concept:C0871935lld:lifeskim
pubmed-article:15926850lifeskim:mentionsumls-concept:C2346593lld:lifeskim
pubmed-article:15926850pubmed:issue22lld:pubmed
pubmed-article:15926850pubmed:dateCreated2005-6-1lld:pubmed
pubmed-article:15926850pubmed:abstractTextThe report uses density functional theory to address the mechanism of heme degradation by the enzyme heme oxygenase (HO) using a model ferric hydroperoxide complex. HO is known to trap heme molecules and degrade them to maintain iron homeostasis in the biosystem. The degradation is initiated by complexation of the heme, then formation of the iron-hydroperoxo species, which subsequently oxidizes the meso position of the porphyrin by hydroxylation, thereby enabling eventually the cleavage of the porphyrin ring. Kinetic isotope effect studies indicate that the mechanism is assisted by general acid catalysis, via a chain of water molecules, and that all the events occur in concert. However, previous theoretical treatments indicated that the concerted mechanism has a high barrier, much higher than an alternative mechanism that is initiated by O-O bond homolysis of iron-hydroperoxide. The present contribution studies the stepwise and concerted acid-catalyzed mechanisms using H(3)O(+)(H(2)O)(n)(), n = 0-2. The effect of the acid strength is tested using the H(4)N(+)(H(2)O)(2) cluster and a fully protonated ferric hydroperoxide. All the calculations show that a stepwise mechanism that involves proton relay and O-O homolysis, in the rate-determining step, has a much lower barrier (>10 kcal/mol) than the corresponding fully concerted mechanism. The best fit of the calculated solvent kinetic isotope effect, to the experimental data, is obtained for the H(3)O(+)(H(2)O)(2) cluster. The calculated alpha-deuterium secondary kinetic isotope effect is inverse (0.95-0.98), but much less so than the experimental value (0.7). Possible reasons for this quantitative difference are discussed. Some probes are suggested that may enable experiment to distinguish the stepwise from the concerted mechanism.lld:pubmed
pubmed-article:15926850pubmed:languageenglld:pubmed
pubmed-article:15926850pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15926850pubmed:citationSubsetIMlld:pubmed
pubmed-article:15926850pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15926850pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15926850pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15926850pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15926850pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15926850pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15926850pubmed:statusMEDLINElld:pubmed
pubmed-article:15926850pubmed:monthJunlld:pubmed
pubmed-article:15926850pubmed:issn0002-7863lld:pubmed
pubmed-article:15926850pubmed:authorpubmed-author:ShaikSasonSlld:pubmed
pubmed-article:15926850pubmed:authorpubmed-author:de...lld:pubmed
pubmed-article:15926850pubmed:authorpubmed-author:KumarDeveshDlld:pubmed
pubmed-article:15926850pubmed:issnTypePrintlld:pubmed
pubmed-article:15926850pubmed:day8lld:pubmed
pubmed-article:15926850pubmed:volume127lld:pubmed
pubmed-article:15926850pubmed:ownerNLMlld:pubmed
pubmed-article:15926850pubmed:authorsCompleteYlld:pubmed
pubmed-article:15926850pubmed:pagination8204-13lld:pubmed
pubmed-article:15926850pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:15926850pubmed:meshHeadingpubmed-meshheading:15926850...lld:pubmed
pubmed-article:15926850pubmed:meshHeadingpubmed-meshheading:15926850...lld:pubmed
pubmed-article:15926850pubmed:meshHeadingpubmed-meshheading:15926850...lld:pubmed
pubmed-article:15926850pubmed:meshHeadingpubmed-meshheading:15926850...lld:pubmed
pubmed-article:15926850pubmed:meshHeadingpubmed-meshheading:15926850...lld:pubmed
pubmed-article:15926850pubmed:meshHeadingpubmed-meshheading:15926850...lld:pubmed
pubmed-article:15926850pubmed:meshHeadingpubmed-meshheading:15926850...lld:pubmed
pubmed-article:15926850pubmed:meshHeadingpubmed-meshheading:15926850...lld:pubmed
pubmed-article:15926850pubmed:meshHeadingpubmed-meshheading:15926850...lld:pubmed
pubmed-article:15926850pubmed:meshHeadingpubmed-meshheading:15926850...lld:pubmed
pubmed-article:15926850pubmed:meshHeadingpubmed-meshheading:15926850...lld:pubmed
pubmed-article:15926850pubmed:year2005lld:pubmed
pubmed-article:15926850pubmed:articleTitleTheory favors a stepwise mechanism of porphyrin degradation by a ferric hydroperoxide model of the active species of heme oxygenase.lld:pubmed
pubmed-article:15926850pubmed:affiliationDepartment of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University, Jerusalem 91904, Israel.lld:pubmed
pubmed-article:15926850pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:15926850pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:15926850lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:15926850lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:15926850lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:15926850lld:pubmed