Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
4
pubmed:dateCreated
2005-2-7
pubmed:abstractText
Friedreich ataxia (FRDA) results from a generalized deficiency of mitochondrial and cytosolic iron-sulfur protein activity initially ascribed to mitochondrial iron overload. Recent in vitro data suggest that frataxin is necessary for iron incorporation in Fe-S cluster (ISC) and heme biosynthesis. In addition, several reports suggest that continuous oxidative damage resulting from hampered superoxide dismutases (SODs) signaling participates in the mitochondrial deficiency and ultimately the neuronal and cardiac cell death. This has led to the use of antioxidants such as idebenone for FRDA therapy. To further discern the role of oxidative stress in FRDA pathophysiology, we have tested the potential effect of increased antioxidant defense using an MnSOD mimetic (MnTBAP) and Cu,ZnSOD overexpression on the murine FRDA cardiomyopathy. Surprisingly, no positive effect was observed, suggesting that increased superoxide production could not explain by itself the FRDA cardiac pathophysiology. Moreover, we demonstrate that complete frataxin-deficiency neither induces oxidative stress in neuronal tissues nor alters the MnSOD expression and induction in the early step of the pathology (neuronal and cardiac) as previously suggested. We show that cytosolic ISC aconitase activity of iron regulatory protein-1 progressively decreases, whereas its apo-RNA binding form increases despite the absence of oxidative stress, suggesting that in a mammalian system the mitochondrial ISC assembly machinery is essential for cytosolic ISC biogenesis. In conclusion, our data demonstrate that in FRDA, mitochondrial iron accumulation does not induce oxidative stress and we propose that, contrary to the general assumption, FRDA is a neurodegenerative disease not associated with oxidative damage.
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Feb
pubmed:issn
0964-6906
pubmed:author
pubmed:issnType
Print
pubmed:day
15
pubmed:volume
14
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
463-74
pubmed:dateRevised
2006-11-15
pubmed:meshHeading
pubmed-meshheading:15615771-Animals, pubmed-meshheading:15615771-Binding Sites, pubmed-meshheading:15615771-Cardiomyopathies, pubmed-meshheading:15615771-Cytosol, pubmed-meshheading:15615771-Free Radical Scavengers, pubmed-meshheading:15615771-Friedreich Ataxia, pubmed-meshheading:15615771-Gene Expression Profiling, pubmed-meshheading:15615771-Iron, pubmed-meshheading:15615771-Iron Regulatory Protein 1, pubmed-meshheading:15615771-Iron-Sulfur Proteins, pubmed-meshheading:15615771-Manganese, pubmed-meshheading:15615771-Metalloporphyrins, pubmed-meshheading:15615771-Mice, pubmed-meshheading:15615771-Mice, Knockout, pubmed-meshheading:15615771-Microarray Analysis, pubmed-meshheading:15615771-Mitochondria, pubmed-meshheading:15615771-Neurons, pubmed-meshheading:15615771-Oxidation-Reduction, pubmed-meshheading:15615771-Oxidative Stress, pubmed-meshheading:15615771-RNA, pubmed-meshheading:15615771-Superoxide Dismutase
pubmed:year
2005
pubmed:articleTitle
Friedreich ataxia: the oxidative stress paradox.
pubmed:affiliation
Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, 67404 Illkirch Cedex, CU de Strasbourg, France.
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't