Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:11214261rdf:typepubmed:Citationlld:pubmed
pubmed-article:11214261lifeskim:mentionsumls-concept:C0013798lld:lifeskim
pubmed-article:11214261lifeskim:mentionsumls-concept:C0332189lld:lifeskim
pubmed-article:11214261lifeskim:mentionsumls-concept:C0475224lld:lifeskim
pubmed-article:11214261lifeskim:mentionsumls-concept:C0449851lld:lifeskim
pubmed-article:11214261lifeskim:mentionsumls-concept:C1980028lld:lifeskim
pubmed-article:11214261lifeskim:mentionsumls-concept:C2926735lld:lifeskim
pubmed-article:11214261pubmed:issue1lld:pubmed
pubmed-article:11214261pubmed:dateCreated2001-2-13lld:pubmed
pubmed-article:11214261pubmed:abstractTextA novel method for the detection of ischaemic episodes in long duration ECGs is proposed. It includes noise handling, feature extraction, rule-based beat classification, sliding window classification and ischaemic episode identification, all integrated in a four-stage procedure. It can be executed in real time and is able to provide explanations for the diagnostic decisions obtained. The method was tested on the ESC ST-T database and high scores were obtained for both sensitivity and positive predictive accuracy (93.8% and 78.5% respectively using aggregate gross statistics, and 90.7% and 80.7% using aggregate average statistics).lld:pubmed
pubmed-article:11214261pubmed:languageenglld:pubmed
pubmed-article:11214261pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11214261pubmed:citationSubsetIMlld:pubmed
pubmed-article:11214261pubmed:statusMEDLINElld:pubmed
pubmed-article:11214261pubmed:monthJanlld:pubmed
pubmed-article:11214261pubmed:issn0140-0118lld:pubmed
pubmed-article:11214261pubmed:authorpubmed-author:MichalisL KLKlld:pubmed
pubmed-article:11214261pubmed:authorpubmed-author:LiavasA PAPlld:pubmed
pubmed-article:11214261pubmed:authorpubmed-author:LikasAAlld:pubmed
pubmed-article:11214261pubmed:authorpubmed-author:FotiadisD IDIlld:pubmed
pubmed-article:11214261pubmed:authorpubmed-author:PapaloukasCClld:pubmed
pubmed-article:11214261pubmed:issnTypePrintlld:pubmed
pubmed-article:11214261pubmed:volume39lld:pubmed
pubmed-article:11214261pubmed:ownerNLMlld:pubmed
pubmed-article:11214261pubmed:authorsCompleteYlld:pubmed
pubmed-article:11214261pubmed:pagination105-12lld:pubmed
pubmed-article:11214261pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:11214261pubmed:meshHeadingpubmed-meshheading:11214261...lld:pubmed
pubmed-article:11214261pubmed:meshHeadingpubmed-meshheading:11214261...lld:pubmed
pubmed-article:11214261pubmed:meshHeadingpubmed-meshheading:11214261...lld:pubmed
pubmed-article:11214261pubmed:meshHeadingpubmed-meshheading:11214261...lld:pubmed
pubmed-article:11214261pubmed:year2001lld:pubmed
pubmed-article:11214261pubmed:articleTitleA knowledge-based technique for automated detection of ischaemic episodes in long duration electrocardiograms.lld:pubmed
pubmed-article:11214261pubmed:affiliationDepartment of Medical Physics, Medical School, University of Ioannina, Greece.lld:pubmed
pubmed-article:11214261pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:11214261pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed