Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
11
pubmed:dateCreated
2000-6-5
pubmed:abstractText
Bacillus subtilis grows in the absence of oxygen using nitrate ammonification and various fermentation processes. Lactate, acetate, and 2,3-butanediol were identified in the growth medium as the major anaerobic fermentation products by using high-performance liquid chromatography. Lactate formation was found to be dependent on the lctEP locus, encoding lactate dehydrogenase and a putative lactate permease. Mutation of lctE results in drastically reduced anaerobic growth independent of the presence of alternative electron acceptors, indicating the importance of NADH reoxidation by lactate dehydrogenase for the overall anaerobic energy metabolism. Anaerobic formation of 2,3-butanediol via acetoin involves acetolactate synthase and decarboxylase encoded by the alsSD operon. Mutation of alsSD has no significant effect on anaerobic growth. Anaerobic acetate synthesis from acetyl coenzyme A requires phosphotransacetylase encoded by pta. Similar to the case for lctEP, mutation of pta significantly reduces anaerobic fermentative and respiratory growth. The expression of both lctEP and alsSD is strongly induced under anaerobic conditions. Anaerobic lctEP and alsSD induction was found to be partially dependent on the gene encoding the redox regulator Fnr. The observed fnr dependence might be the result of Fnr-induced arfM (ywiD) transcription and subsequent lctEP and alsSD activation by the regulator ArfM (YwiD). The two-component regulatory system encoded by resDE is also involved in anaerobic lctEP induction. No direct resDE influence on the redox regulation of alsSD was observed. The alternative electron acceptor nitrate represses anaerobic lctEP and alsSD transcription. Nitrate repression requires resDE- and fnr-dependent expression of narGHJI, encoding respiratory nitrate reductase. The gene alsR, encoding a regulator potentially responding to changes of the intracellular pH and to acetate, is essential for anaerobic lctEP and alsSD expression. In agreement with its known aerobic function, no obvious oxygen- or nitrate-dependent pta regulation was observed. A model for the regulation of the anaerobic fermentation genes in B. subtilis is proposed.
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-102366, http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-10368162, http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-10423526, http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-10498703, http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-10559153, http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-1619665, http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-2993813, http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-3287331, http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-353303, http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-3888403, http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-7557333, http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-7685336, http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-7704253, http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-7730271, http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-7747938, http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-7860592, http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-7868621, http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-7934817, http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-8588737, http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-8631715, http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-8682783, http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-8846791, http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-8969502, http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-9298659, http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-9352926, http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-9418235, http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-9422613, http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-9765565, http://linkedlifedata.com/resource/pubmed/commentcorrection/10809684-9891797
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
http://linkedlifedata.com/resource/pubmed/chemical/2,3-butylene glycol, http://linkedlifedata.com/resource/pubmed/chemical/Acetates, http://linkedlifedata.com/resource/pubmed/chemical/Acetolactate Synthase, http://linkedlifedata.com/resource/pubmed/chemical/Alcohol Oxidoreductases, http://linkedlifedata.com/resource/pubmed/chemical/Bacterial Proteins, http://linkedlifedata.com/resource/pubmed/chemical/Butylene Glycols, http://linkedlifedata.com/resource/pubmed/chemical/Carboxy-Lyases, http://linkedlifedata.com/resource/pubmed/chemical/Escherichia coli Proteins, http://linkedlifedata.com/resource/pubmed/chemical/FNR protein, E coli, http://linkedlifedata.com/resource/pubmed/chemical/Iron-Sulfur Proteins, http://linkedlifedata.com/resource/pubmed/chemical/L-Lactate Dehydrogenase, http://linkedlifedata.com/resource/pubmed/chemical/Lactic Acid, http://linkedlifedata.com/resource/pubmed/chemical/Membrane Transport Proteins, http://linkedlifedata.com/resource/pubmed/chemical/Nitrates, http://linkedlifedata.com/resource/pubmed/chemical/Phosphate Acetyltransferase, http://linkedlifedata.com/resource/pubmed/chemical/acetolactate decarboxylase, http://linkedlifedata.com/resource/pubmed/chemical/butanediol dehydrogenase, http://linkedlifedata.com/resource/pubmed/chemical/lctP protein, E coli
pubmed:status
MEDLINE
pubmed:month
Jun
pubmed:issn
0021-9193
pubmed:author
pubmed:issnType
Print
pubmed:volume
182
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
3072-80
pubmed:dateRevised
2009-11-18
pubmed:meshHeading
pubmed-meshheading:10809684-Acetates, pubmed-meshheading:10809684-Acetolactate Synthase, pubmed-meshheading:10809684-Alcohol Oxidoreductases, pubmed-meshheading:10809684-Anaerobiosis, pubmed-meshheading:10809684-Bacillus subtilis, pubmed-meshheading:10809684-Bacterial Proteins, pubmed-meshheading:10809684-Butylene Glycols, pubmed-meshheading:10809684-Carboxy-Lyases, pubmed-meshheading:10809684-Escherichia coli Proteins, pubmed-meshheading:10809684-Fermentation, pubmed-meshheading:10809684-Gene Expression Regulation, Bacterial, pubmed-meshheading:10809684-Genes, Regulator, pubmed-meshheading:10809684-Iron-Sulfur Proteins, pubmed-meshheading:10809684-L-Lactate Dehydrogenase, pubmed-meshheading:10809684-Lactic Acid, pubmed-meshheading:10809684-Membrane Transport Proteins, pubmed-meshheading:10809684-Models, Genetic, pubmed-meshheading:10809684-Mutation, pubmed-meshheading:10809684-Nitrates, pubmed-meshheading:10809684-Operon, pubmed-meshheading:10809684-Oxidation-Reduction, pubmed-meshheading:10809684-Phosphate Acetyltransferase
pubmed:year
2000
pubmed:articleTitle
Fermentative metabolism of Bacillus subtilis: physiology and regulation of gene expression.
pubmed:affiliation
Unité de Régulation de l'Expression Génétique, Laboratoire de Génomique des Microorganismes Pathogènes, Institut Pasteur, 75724 Paris Cedex 15, France.
More...