pubmed-article:10758144 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:10758144 | lifeskim:mentions | umls-concept:C0011928 | lld:lifeskim |
pubmed-article:10758144 | lifeskim:mentions | umls-concept:C0028128 | lld:lifeskim |
pubmed-article:10758144 | lifeskim:mentions | umls-concept:C0027882 | lld:lifeskim |
pubmed-article:10758144 | lifeskim:mentions | umls-concept:C0596138 | lld:lifeskim |
pubmed-article:10758144 | lifeskim:mentions | umls-concept:C1704735 | lld:lifeskim |
pubmed-article:10758144 | lifeskim:mentions | umls-concept:C0521116 | lld:lifeskim |
pubmed-article:10758144 | pubmed:issue | 4 | lld:pubmed |
pubmed-article:10758144 | pubmed:dateCreated | 2000-5-15 | lld:pubmed |
pubmed-article:10758144 | pubmed:abstractText | In this study, we examined whether nitric oxide synthase (NOS) is upregulated in small dorsal root ganglion (DRG) neurons after axotomy and, if so, whether the upregulation of NOS modulates Na(+) currents in these cells. We identified axotomized C-type DRG neurons using a fluorescent label, hydroxystilbamine methanesulfonate and found that sciatic nerve transection upregulates NOS activity in 60% of these neurons. Fast-inactivating tetrodotoxin-sensitive (TTX-S) Na(+) ("fast") current and slowly inactivating tetrodotoxin-resistant (TTX-R) Na(+) ("slow") current were present in control noninjured neurons with current densities of 1.08 +/- 0. 09 nA/pF and 1.03 +/- 0.10 nA/pF, respectively (means +/- SE). In some control neurons, a persistent TTX-R Na(+) current was observed with current amplitude as much as approximately 50% of the TTX-S Na(+) current amplitude and 100% of the TTX-R Na(+) current amplitude. Seven to 10 days after axotomy, current density of the fast and slow Na(+) currents was reduced to 0.58 +/- 0.05 nA/pF (P < 0.01) and 0.2 +/- 0.05 nA/pF (P < 0.001), respectively. Persistent TTX-R Na(+) current was not observed in axotomized neurons. Nitric oxide (NO) produced by the upregulation of NOS can block Na(+) currents. To examine the role of NOS upregulation on the reduction of the three types of Na(+) currents in axotomized neurons, axotomized DRG neurons were incubated with 1 mM N(G)-nitro-L-arginine methyl ester (L-NAME), a NOS inhibitor. The current density of fast and slow Na(+) channels in these neurons increased to 0.82 +/- 0.08 nA/pF (P < 0.01) and 0.34 +/- 0.04 nA/pF (P < 0.05), respectively. However, we did not observe any persistent TTX-R current in axotomized neurons incubated with L-NAME. These results demonstrate that endogenous NO/NO-related species block both fast and slow Na(+) current in DRG neurons and suggest that NO functions as an autocrine regulator of Na(+) currents in injured DRG neurons. | lld:pubmed |
pubmed-article:10758144 | pubmed:language | eng | lld:pubmed |
pubmed-article:10758144 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10758144 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:10758144 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10758144 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10758144 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10758144 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10758144 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10758144 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10758144 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10758144 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10758144 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10758144 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:10758144 | pubmed:month | Apr | lld:pubmed |
pubmed-article:10758144 | pubmed:issn | 0022-3077 | lld:pubmed |
pubmed-article:10758144 | pubmed:author | pubmed-author:BlackJ AJA | lld:pubmed |
pubmed-article:10758144 | pubmed:author | pubmed-author:WaxmanS GSG | lld:pubmed |
pubmed-article:10758144 | pubmed:author | pubmed-author:RenganathanMM | lld:pubmed |
pubmed-article:10758144 | pubmed:author | pubmed-author:CumminsT RTR | lld:pubmed |
pubmed-article:10758144 | pubmed:author | pubmed-author:HormuzdiarW... | lld:pubmed |
pubmed-article:10758144 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:10758144 | pubmed:volume | 83 | lld:pubmed |
pubmed-article:10758144 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:10758144 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:10758144 | pubmed:pagination | 2431-42 | lld:pubmed |
pubmed-article:10758144 | pubmed:dateRevised | 2006-11-15 | lld:pubmed |
pubmed-article:10758144 | pubmed:meshHeading | pubmed-meshheading:10758144... | lld:pubmed |
pubmed-article:10758144 | pubmed:meshHeading | pubmed-meshheading:10758144... | lld:pubmed |
pubmed-article:10758144 | pubmed:meshHeading | pubmed-meshheading:10758144... | lld:pubmed |
pubmed-article:10758144 | pubmed:meshHeading | pubmed-meshheading:10758144... | lld:pubmed |
pubmed-article:10758144 | pubmed:meshHeading | pubmed-meshheading:10758144... | lld:pubmed |
pubmed-article:10758144 | pubmed:meshHeading | pubmed-meshheading:10758144... | lld:pubmed |
pubmed-article:10758144 | pubmed:meshHeading | pubmed-meshheading:10758144... | lld:pubmed |
pubmed-article:10758144 | pubmed:meshHeading | pubmed-meshheading:10758144... | lld:pubmed |
pubmed-article:10758144 | pubmed:meshHeading | pubmed-meshheading:10758144... | lld:pubmed |
pubmed-article:10758144 | pubmed:meshHeading | pubmed-meshheading:10758144... | lld:pubmed |
pubmed-article:10758144 | pubmed:meshHeading | pubmed-meshheading:10758144... | lld:pubmed |
pubmed-article:10758144 | pubmed:meshHeading | pubmed-meshheading:10758144... | lld:pubmed |
pubmed-article:10758144 | pubmed:meshHeading | pubmed-meshheading:10758144... | lld:pubmed |
pubmed-article:10758144 | pubmed:meshHeading | pubmed-meshheading:10758144... | lld:pubmed |
pubmed-article:10758144 | pubmed:meshHeading | pubmed-meshheading:10758144... | lld:pubmed |
pubmed-article:10758144 | pubmed:meshHeading | pubmed-meshheading:10758144... | lld:pubmed |
pubmed-article:10758144 | pubmed:meshHeading | pubmed-meshheading:10758144... | lld:pubmed |
pubmed-article:10758144 | pubmed:meshHeading | pubmed-meshheading:10758144... | lld:pubmed |
pubmed-article:10758144 | pubmed:meshHeading | pubmed-meshheading:10758144... | lld:pubmed |
pubmed-article:10758144 | pubmed:meshHeading | pubmed-meshheading:10758144... | lld:pubmed |
pubmed-article:10758144 | pubmed:meshHeading | pubmed-meshheading:10758144... | lld:pubmed |
pubmed-article:10758144 | pubmed:year | 2000 | lld:pubmed |
pubmed-article:10758144 | pubmed:articleTitle | Nitric oxide is an autocrine regulator of Na(+) currents in axotomized C-type DRG neurons. | lld:pubmed |
pubmed-article:10758144 | pubmed:affiliation | Department of Neurology, Yale Medical School, New Haven 06510, USA. | lld:pubmed |
pubmed-article:10758144 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:10758144 | pubmed:publicationType | Research Support, U.S. Gov't, Non-P.H.S. | lld:pubmed |
pubmed-article:10758144 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |